DSA Series Chapter 15 – POSTORDER TRAVERSAL (BINARY TREE)(Python Version)

 


 [Join Our Blog

DSA Series Chapter 15 – POSTORDER TRAVERSAL (BINARY TREE)(Python Version)

1. Postorder Traversal – Quick Recall

Traversal Order:

Left → Right → Root

Category:

  • Depth First Traversal (DFS)


2. Binary Tree Used (Same as C Version)

            1
          /   \
         2     3
        / \
       4   5

Expected Postorder Output

4 5 2 3 1

3. Node Structure in Python

class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

4. Postorder Traversal Logic (Plain English)

  1. If the current node is None, return

  2. Traverse the left subtree

  3. Traverse the right subtree

  4. Visit (print/process) the root node


5. Python Function – Recursive Postorder Traversal

def postorder(root):
    if root is not None:
        postorder(root.left)
        postorder(root.right)
        print(root.data, end=" ")

6. Complete Executable Python Program

class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

def postorder(root):
    if root is not None:
        postorder(root.left)
        postorder(root.right)
        print(root.data, end=" ")

# Tree creation
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)

print("Postorder Traversal:")
postorder(root)

Output

Postorder Traversal:
4 5 2 3 1

7. Dry Run (Recursive Call Flow)

postorder(1)
 └── postorder(2)
     └── postorder(4) → print 4
     └── postorder(5) → print 5
     → print 2
 └── postorder(3) → print 3
 → print 1

8. Time and Space Complexity

Time Complexity

  • O(n) — every node is visited once

Space Complexity

  • O(h) — recursion stack
    where h = height of the tree

    • Skewed tree → O(n)

    • Balanced tree → O(log n)


9. Very Important Application (Exam-Oriented)

Postorder traversal is used to delete/free a binary tree.

Reason:
Children nodes are processed before their parent, avoiding dangling references.


10. Common Student Mistakes

  • Printing root before right subtree (turns into inorder)

  • Forgetting base condition (root is None)

  • Confusing postorder with preorder


11. Practice Questions

  1. Write postorder traversal for a left-skewed tree.

  2. Predict postorder output for a single-node tree.

  3. Why is postorder traversal ideal for deleting trees?

  4. Convert recursive postorder traversal to iterative logic in Python.


ALSO CHECK 

DS(Data Structure) Python&C Edition

DSA Series Chapter 1 Time & Space Complexity ( C Edition)

DSA Series Chapter 2 Arrays  (C Version)


DSA Series Chapter 2 Arrays  (Python Version)

DSA Series Chapter 3 Strings (C Version)


DSA Series Chapter 3 Strings (Python Version)


DSA Series Chapter 4 Linked Lists (Python Version)


DSA Series Chapter 4 Linked Lists (C Version)


DSA Series Chapter 5 Stacks (Python Version)


DSA Series Chapter 5  Stacks  (C Version)




















DSA Series Chapter 13 - Binary Tree traversal, BFS, DFT/DFS, Preorder Traversal In Binary Tree



 

DSA Series Chapter 15 – POSTORDER TRAVERSAL (BINARY TREE)(Python Version)


DSA Series Chapter 15 – POSTORDER TRAVERSAL (BINARY TREE)(C Version)


DSA Series Chapter 16 – LEVEL ORDER TRAVERSAL(BINARY TREE BFS)(C Version)


DSA Series Chapter 16 – LEVEL ORDER TRAVERSAL(BINARY TREE BFS)(Python Version)








Tail Recursion Optimization: How Compilers Convert Recursion Into Iteration


Advanced Recursion: Memoization vs. Tabulation — The Deep Optimization Blueprint for Professionals


Advanced Sorting Algorithms: Merge Sort Internals — Merge Tree, Cache Behavior & Real Cost Analysis


Enjoyed this post? [Follow here] for daily coding insights.


Comments