DSA Series Chapter 15 – POSTORDER TRAVERSAL (BINARY TREE)(C Version)
Focus areas:
Clear traversal logic
Strong recursion understanding
Practical applications (very important for exams)
Clear traversal logic
Strong recursion understanding
Practical applications (very important for exams)
1. What is Postorder Traversal?
Definition (Exam-Ready)
Postorder traversal is a depth-first traversal technique in which the left subtree is visited first, then the right subtree, and finally the root node.
Postorder traversal is a depth-first traversal technique in which the left subtree is visited first, then the right subtree, and finally the root node.
Traversal Order
Left → Right → Root
Left → Right → Root
2. Binary Tree Diagram Used
1
/ \
2 3
/ \
4 5
1
/ \
2 3
/ \
4 5
The same tree is used consistently for explanation, dry run, and program output.
3. Step-by-Step Postorder Traversal on Diagram
Traversal rule: Left → Right → Root
Start at root (1)
Move to left subtree of 1 (node 2)
Move to left subtree of 2 (node 4)
Left and right are NULL → visit 4
Move to right subtree of 2 (node 5)
Left and right are NULL → visit 5
Both subtrees of node 2 processed → visit 2
Move to right subtree of root (node 3)
Left and right are NULL → visit 3
Both subtrees of root processed → visit 1
Final Postorder Output
4 5 2 3 1
4 5 2 3 1
4. Algorithm (Recursive – Plain English)
If current node is NULL, return
Traverse left subtree recursively
Traverse right subtree recursively
Visit the current node
If current node is NULL, return
Traverse left subtree recursively
Traverse right subtree recursively
Visit the current node
5. Recursive Algorithm (Pseudo Code)
POSTORDER(node)
{
if(node != NULL)
{
POSTORDER(node->left)
POSTORDER(node->right)
visit(node)
}
}
POSTORDER(node)
{
if(node != NULL)
{
POSTORDER(node->left)
POSTORDER(node->right)
visit(node)
}
}
6. C Program – Postorder Traversal (Recursive)
#include <stdio.h>
#include <stdlib.h>
struct Node {
int data;
struct Node *left;
struct Node *right;
};
struct Node* createNode(int data)
{
struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = data;
newNode->left = NULL;
newNode->right = NULL;
return newNode;
}
void postorder(struct Node* root)
{
if (root != NULL)
{
postorder(root->left);
postorder(root->right);
printf("%d ", root->data);
}
}
int main()
{
struct Node* root = createNode(1);
root->left = createNode(2);
root->right = createNode(3);
root->left->left = createNode(4);
root->left->right = createNode(5);
printf("Postorder Traversal: ");
postorder(root);
return 0;
}
#include <stdio.h>
#include <stdlib.h>
struct Node {
int data;
struct Node *left;
struct Node *right;
};
struct Node* createNode(int data)
{
struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = data;
newNode->left = NULL;
newNode->right = NULL;
return newNode;
}
void postorder(struct Node* root)
{
if (root != NULL)
{
postorder(root->left);
postorder(root->right);
printf("%d ", root->data);
}
}
int main()
{
struct Node* root = createNode(1);
root->left = createNode(2);
root->right = createNode(3);
root->left->left = createNode(4);
root->left->right = createNode(5);
printf("Postorder Traversal: ");
postorder(root);
return 0;
}
7. Dry Run of Recursive Calls
postorder(1)
postorder(2)
postorder(4)
print 4
postorder(5)
print 5
print 2
postorder(3)
print 3
print 1
postorder(1)
postorder(2)
postorder(4)
print 4
postorder(5)
print 5
print 2
postorder(3)
print 3
print 1
8. Time and Space Complexity
Time Complexity
O(n) — each node is visited exactly once
O(n) — each node is visited exactly once
Space Complexity
O(h) — recursion stack
Skewed tree → O(n)
Balanced tree → O(log n)
O(h) — recursion stack
Skewed tree → O(n)
Balanced tree → O(log n)
9. Important Application (Very Important for Exams)
Deleting a Binary Tree
Postorder traversal is used to delete/free a binary tree safely.
Postorder traversal is used to delete/free a binary tree safely.
Reason:
Children nodes are deleted before the parent node
10. Important Applications of Postorder Traversal
Deleting or freeing trees
Expression tree evaluation (postfix expressions)
Bottom-up tree processing
Deleting or freeing trees
Expression tree evaluation (postfix expressions)
Bottom-up tree processing
11. Common Exam & Interview Mistakes
Printing root before right subtree (becomes inorder)
Forgetting NULL base condition
Confusing postorder with preorder
Printing root before right subtree (becomes inorder)
Forgetting NULL base condition
Confusing postorder with preorder
12. Practice Questions
Write postorder traversal for a right-skewed tree.
Explain why postorder is preferred for deleting trees.
Predict postorder output for a single-node tree.
Convert recursive postorder traversal to iterative logic.
Write postorder traversal for a right-skewed tree.
Explain why postorder is preferred for deleting trees.
Predict postorder output for a single-node tree.
Convert recursive postorder traversal to iterative logic.
13. Learning Outcome (Post 3.3)
After this post, a student can:
Explain postorder traversal clearly
Perform dry runs accurately
Write postorder traversal program in C
Apply postorder logic in real use cases
ALSO CHECK
ALSO CHECK
.png)
Comments
Post a Comment